忍者ブログ
Yaleで、遊んで学ぶ日々。

Yaleで、遊んで学ぶ日々。

囲碁、ときどきプログラミング、ところにより経済。
[19]  [20]  [21]  [22]  [23]  [24]  [25]  [26]  [27]  [28]  [29
×

[PR]上記の広告は3ヶ月以上新規記事投稿のないブログに表示されています。新しい記事を書く事で広告が消えます。

Matlabプログラミングの問題が出されて、答えを書くとその長さに応じて得点が入る。短いほど高得点らしい。
http://www.mathworks.com/matlabcentral/cody/


今日はこれを考えてみる(ソース)。

INSTRUCTIONS

This is a multi-dimensional variant of the normal multiplication table used to teach elementary students multiplication. In this variant, we are going to produce a table that multiplies the divisors 1 to n (input) agains itself in d dimensions.

Note: Inputting d = 0 should return the number 1 and d = 1 should return a column vector with the elements 1 to n.

Example:

Input:

n = 3;
d = 3;

Output:

tt(:,:,1) = [ 1  2  3
              2  4  6
              3  6  9  ];
tt(:,:,2) = [ 2  4  6
              4  8  12
              6  12 18 ];
tt(:,:,3) = [ 3  6  9
              6  12 18
              9  18 27 ];
PR

データフレームに長い名前を付けてしまうと、いちいち名前を指定するのが面倒くさい。

data.with.long.name <- data.frame(gdp=runif(10), price=runif(10))
data.with.long.name$gdppc <- data.with.long.name$gdp / data.with.long.name$price


with() を使うと、少しだけ楽になる。
data.with.long.name <- data.frame(gdp=runif(10), price=runif(10))
data.with.long.name$gdppc <- with(data.with.long.name, gdp / price)


within() というのもあって少し使いかたが違う。
data.with.long.name <- data.frame(gdp=runif(10), price=runif(10))
data.with.long.name <- within(data.with.long.name, gdppc <- gdp / price)


命令は複数書いても良いから、結構便利。


大した問題でもないが、pmlパッケージのpdata.frame関数に不具合発見。

どうも、「非欠損値が1つしかない」列があると困るらしい。
せっかくなのでcranプロジェクトにバグレポートしてみたら、これは「バグ」ではないとのこと。難しいもんだな。


library(plm)
 
dat <- data.frame(i = c(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4),
                  t = c(1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3))
dat$x <- NA
dat$y <- NA
dat$z <- NA
dat$y[1] <- 1
dat$z[1:2] <- 2:3
 
dat
 
# this fails
pdata.frame(dat, index = c("i", "t"))
 
# this is fine
pdata.frame(dat[, -4], index = c("i", "t"))

 

sessionInfo()

以上だそうで。

ソース:http://r.789695.n4.nabble.com/Determine-package-version-in-R-td870896.html
 

出力例
> sessionInfo()
 
R version 2.13.2 (2011-09-30)
Platform: x86_64-pc-mingw32/x64 (64-bit)
 
locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    
 
attached base packages:
[1] splines   grid      stats     graphics  grDevices utils    
[7] datasets  methods   base     
 
other attached packages:
 [1] plm_1.2-8         nlme_3.1-102      bdsmatrix_1.3    
 [4] foreign_0.8-46    AER_1.1-9         strucchange_1.4-6
 [7] sandwich_2.2-9    lmtest_0.9-29     zoo_1.7-6        
[10] Formula_1.0-1     car_2.0-11        survival_2.36-9  
[13] nnet_7.3-1        MASS_7.3-14       ggplot2_0.8.9    
[16] proto_0.3-9.2     reshape_0.8.4     plyr_1.6         
 
loaded via a namespace (and not attached):
[1] lattice_0.19-33 tools_2.13.2   
 
どうもスクリプトの走りが悪いので、Rの計算速度をチェックしてみることにした。

k * k の正方行列(正規分布) X を定義して、X' X を計算するという作業を、kの値を変えて行い、経過時間を調べる。Rではcrossprod関数を用いるか、t(X) %*% X という行列演算の2通りの方法がある。

下図は、横軸に行列のサイズ(k)を、縦軸に経過時間をプロットしたもの。黒がcrossprodを使った場合で、青は行列演算を使った場合。まず、相対的に見て、crossprodが圧倒的に早いことが目に付く。両者は全く同じ結果なので、行列演算は使わないほうがいいようだ。crosspordの方を見ると、2000*2000行列で5秒、3000*3000で17秒という結果だった。これ以降はちょっと時間が掛かりすぎるので止めた。
matmult.png














ただ、経過時間は結構正確に推計できる。上の図を、両対数を取った下の図を見てみると、ほぼ直線の関係になっていることが分かる。関係式を推計すると、
log(crossprod) = -18.83 + 2.69 log(size)
となる。例えば、サイズ6000を代入するとおよそ92秒と予測される。
matmultlog.png



















Matlabと比べるとRの遅さに驚く。サイズ2000で0.7秒、サイズ3000で2.3秒、サイズ6000で19秒だ。ちなみに、こちらも両対数を取ると直線になるから(サイズが小さい範囲は誤差だろう)、多分似たようなアルゴリズムではあるのかもしれない。関係式を推計してみると
log(time) = -19.59 + 2.55 log(size)
となり、比較的推計値の値が近い。
matlabmatmult.png













matlabmatmultlog.png



















Calender
12 2025/01 02
S M T W T F S
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
Search in This Blog
Latest Comments
[03/30 川内のばば山田]
[03/30 川内のばば山田]
[08/06 Aterarie]
[07/05 Agazoger]
[07/01 Thomaskina]
Oldest Posts
Latest Trackbacks
フリーエリア

Barcode
Access Analysis
Powerd by NINJAブログ / Designed by SUSH
Copyright © Yaleで、遊んで学ぶ日々。 All Rights Reserved.
忍者ブログ [PR]